OXIDATION OF SUBSTITUTED CARBODIIMIDES AND UREAS'

D. SARANTAKIS, T. K. WATTS, and B. WEINSTEIN

Department of Chemistry, University of Washington, Seattle, Washington 98105, U.S.A.

(Received in the USA 23 March 1971; Received in the UK for publication 30 March 1971)

Abstract— Pertrifluoroacetic acid oxidation of N,N'-dicyclohexylcarbodiimide and N,N'-diphenylsulfurdiimide yielded N-trifluoroacetyl-N,N'-dicyclohexyl urea and 2,2,2-trifluoroacetanilide as the major products. Sodium hypochlorite oxidation of N-hydroxy-N,N'-diphenyl thiourea and N-hydroxy-N,N'diphenyl urea afforded 1,3,4,6-tetraphenyl-2,5-dithio-biurea and 1,2,4-triphenylsemicarbazide, respectively. **The dimeric nature of these latter compounds implies the involvement of radical oxidation schemes.**

INTRODUCTION

l_ THE carbodiimide N-oxide system, $RN = C \rightarrow NR$, represents a potential and interest- $+$

 \mathbf{O}

ing 1.3-dipolar intermediate. but no definite examples are known at present. One possible route to such a compound involves the oxidation of N.N'dicyclohexylcarbodiimide (DCCI) with a peracid :

$$
\begin{array}{c}\nO^-\n\text{C}_{6}H_{11}N=C=NC_{6}H_{11}+RCOOOH\rightarrow C_{6}H_{11}N=C=NC_{6}H_{11}+RCOOH\n\end{array}
$$

A hterature search disclosed some earlier work on the reaction between DCCI and benzoyl peroxide.2 N-Cyclohexyl isocyanate and N-cyclohexylbenzamide were formed with chloroform as the solvent, while in isopropanol the products were acetone. benzene. and N-benzoyl-N.N'-dicyclohexyl urea. If DCCI. an acid. and hydrogen peroxide or a peracid were used. then there was obtained either a symmetrical or unsymmetrical peroxide.³ A considerable amount of uncharacterized residue was reported here. too.

Later. the addition of 2-methyl-2-nitrosopropane to t-butyl isocyanide was postulated to form a carbodiimide N-oxide. followed by a valence isomerization to the oxaziridinimine. which in turn. finally produced the diaziridinone ring system:4

More recently. the oxidation of di-t-butylcarbodiimide with m-chloroperbenzoic acid was found to yield the corresponding di-t-butyldiaziridione in low yield.' In this case. the major possibilities for diaziridione formation were summarized as follows :

The greater reactivity of the acid in comparison with the peracid toward the carbodiimide was said to account for the small amount of the diaziridione and the other. illdefined residues. These conditions are often favourable for the formation of ureas. acid anhydrides, and acyl ureas.⁶

In summary. no carbodiimide N-oxide has been reported to date. Therefore. it was believed mild oxidation conditions might lead to the desired intermediate. Such attempts are now outlined in this study.

RESULTS AND DISCUSSION

An oxidation of N.N'-dicyclohexylcarbodiimide with pertrifluoroacetic acid gave interesting results. but did not yield the N-oxide. The major product was identified as N-trifluoracetyl-N.N'-dicyclohexylurea.⁷ while considerable N.N'-dicyclohexylurea was noted. also. The specific N-acyl urea found here probably results from the reaction of the initially formed trifluoroacetic acid with the diimide:

$$
(CF3CO)2O + H2O2 \rightarrow CF3CO3H + CF3COOH
$$

$$
C_{6}H_{11}N=C=NC_{6}H_{11}+CF_{3}COOH \rightarrow [C_{6}H_{11}NHC=NC_{6}H_{11}] \rightarrow C_{6}H_{11}NHCNC_{6}H_{11}
$$

\n
$$
\downarrow
$$

To show that N.N'-dicyclohexylurea was not an intermediate in this reaction. treatment of it with pertrifluoroacetic acid returned the starting material. A change to a basic peracid oxidation system afforded mostly urea. while a buffered condition formed urea and N-acyl urea. In the latter case. a thick yellow oil was obtained that gave a positive Ferrox test for peroxides.⁸ Carbodiimides under similar conditions are known to yield a variety of products. However. the N-trifluoroacetyl urea may account for some of the uncharacterized residues noted in the past.

This study was extended to include diphenylsulfurdiimide for which no oxidation results have been tabulated in the literature. Briefly. treatment with pertrifluoroacetic acid yielded trifluoroacetanilide.⁹ as well as some red oils. The main product may have resulted from the decomposition of an adduct formed by the addition of the peracid across the nitrogen-sulfur double bonds :

$$
C_6H_5N=S=NC_6H_5+CF_3COOOH \rightarrow [C_6H_5NSHC_6H_5] \rightarrow C_6H_5NHCOCF_3 + SO_2 + C_6H_5NH_2
$$

\n
$$
COCF_3
$$

An alternative route was suggested by the reported reaction between a N.N' disubstituted thiourea and basic sodium hypochlorite solution to form a N.N' disubstituted carbodiimide: 10

S

$$
\parallel
$$

RNHCNHR + 4NaOCl + 2NaOH \rightarrow RN=C=NR + 4NaCl + Na₂SO₄ + 2H₂O

Therefore. one might be able to obtain the desired N-oxide from a N-hydroxy-N.N' disubstituted thiourea under these same conditions. The proposed transformation is the following:

S
\n
$$
\parallel
$$
\nRNCNIRR
\n
$$
\parallel
$$
\nRNCNIRR
\n
$$
\rightarrow
$$
\nR
\n
$$
\parallel
$$
\n
$$
\sim
$$
\n
$$
\
$$

It was decided to investigate the same sequence with N-hydroxy-N.N'-diphenyl urea. as this intermediate was available. too.

Treatment of N-hydroxy-N.N'-diphenyl thiourea¹¹ with sodium hypochlorite and sodium hydroxide in dichloromethane afforded a dark-green oil. 1.3-diphenyl urea. and. as the chief product. an unknown. white solid. The elemental analysis revealed the absence of oxygen. while the mass spectrum suggested a possible dimeric formulation $(m/e$ 455. $C_{26}H_{22}N_4S_2^+$). The most logical structure was 1.3.4.6-tetraphenyl-2.5dithio-biurea. which had been previously prepared from hydrazobenzene and mustard gas.¹² An alternative synthesis, involving the refluxing together of hydrazobenzene and phenyl isothiocyanate. gave the desired material. The two compounds had superimposable infrared spectra and undepressed m.ps.

The main sequence observed is hence:

$$
\begin{array}{ccc}\nS & S & O \\
\parallel & \parallel & \parallel \\
C_6H_5NCNHC_6H_5 + NaOCl + NaOH \rightarrow C_6H_5NCNHC_6H_5 + C_6H_5NHCNHC_6H_5 \\
\parallel & C_6H_5NCNHC_6H_5\n\end{array}
$$

A tentative mechanism for the formation of the biurea is:

S
\n
$$
\begin{array}{ccc}\nS & S & S & S \\
\parallel & \parallel & \parallel & \parallel \\
\text{RNCNHR} \longrightarrow \text{RNCNHR} \longrightarrow (\text{RNCNHR})_2 \longrightarrow 2\text{RNCNHR} \longrightarrow (\text{RNCNHR})_2 \\
\downarrow & \downarrow & \downarrow & \parallel \\
\text{OH} & \downarrow & \downarrow & \downarrow\n\end{array}
$$

To justify the intramolecular loss of oxygen. a similar oxidation sequence for hydroxamic acids has been proposed: $13,14$

$$
\begin{array}{ccccccc}\nO & O & O & O & O \\
\downarrow & OH & \parallel & OH & \parallel & -O_2 & \parallel \\
RNCR \longrightarrow RNCR \longrightarrow RNCR & \longrightarrow RNCR & \longrightarrow RNHCR \\
\downarrow & \downarrow & \downarrow & \downarrow \\
OH & O & OOH & \n\end{array}
$$

However. an ionic pathway.¹⁵ as well as a combination of these mechanisms.¹⁶ have been invoked to explain the last results.

Parallel products were seen when N-hydroxy-N.N'-diphenyl urea was treated with sodium hypochlorite and sodium hydroxide. A green oil, 1,3-diphenyl urea, and another white solid were separated from the reaction mixture. The unknown was identified as 1.2.4-triphenylsemicarbazide by the synthesis of an authentic sample. which was obtained by the addition of hydrazobenzene to phenyl isocyanate.

In this case the mechanism may proceed by a one electron abstracting oxidant Thus :

0 0 Ii I[C6H,NCNHC6H, c": C,H5NCNHC6H5 ---. C,H,N==O + C,H,NHk=O I I OH 0. 0 Ii i7 C6H5NCNHC6H, + C,H,N=O -+ C,H,NCNHC6H5 --+ C6H5NCNHC6H, I I I 0. OONC,H, C,H5NH

In summary. the peracid oxidation of carbodiimides or sulfurdiimides and the hypochloride oxidation of N-hydroxy thioureas or N-hydroxy ureas does not yield the carbodiimide N-oxide system. Other routes to this type of intermediate are under investigation.

EXPERIMENTAL

M.ps were. determined with a Reichert 'Thermopan" apparatus and are uncorrected. IR spectra. from KBr pellets were recorded on a Perkin-Elmer 257 spectrometer. NMR spectra were obtained on a Varian Associates' A-60 spectrometer using TMS as an internal standard. Mass spectra were measured on an A.E.I. MS-9 spectrometer at 70 electron-volts. TLC employed iodine or sodium dichromate-sulfuric acid as the detecting agents. Evaporations were performed under reduced pressure (water pump) in a rotary evaporator at minimum temp. Microanalyses were provided by Galbraith Laboratories Inc.. Knoxville. Tennessee. All solvents were reagent grade and the light petroleum had boiling range $30-60^\circ$. MgSO₄ was used for drying purposes

Oxidation of N.N'-dicyclohexylcarbodiimide. Pertrifluoroacetic acid, freshly prepared from H₂O₂ (1.87 g ofa 90% soln. O-05 mole) and trifluoroacetic anhydride (11.55 g 0.055 mole). was added dropwise over a 3 hr period to a stirred soln of N.N'-dicyclohexylcarbodiimide (10-3 g. 0-05 mole) in dry dichloromethane (50 ml) held at 0° . The milky mixture was neutralized with NaHCO₃ aq and filtered to afford N.N'-dicyclohexyl urea (06 g). identical in all aspects with an authentic sample. The organic phase was washed with water. dried. and evaporated to leave a solid. Crystallization from light petroleum and then from cyclohexane gave fine white crystals of N-trifluoroacetyl-N.N'-dicyclohexyl urea (7.8 g) m.p. 138" (lit.⁷ 139"): v_{max} 3460 (NH).334O(NH).2940.2870.17lO(C=O). 1680(CONHamide I). 153O(CONHamideII). 127&119O(CF,).

1150. and 730 cm⁻¹; m/e 320 (C₁₅H₂₃F₃N₂O₂⁺). parent, very small, 195 (C_BH₁₂F₃NO⁺) 1% 152 $(C_3F_3N_2O_2^+)$ 37% 98 $(C_6H_{12}N^+)$ 32% 82 $(C_6H_{10}^+)$ 100% and 67 (CF_2OH^+) 91%; 435 (singlet. NH) and 130-60 (multiple cyclohexyl) Hz (CDCI₃). (Found: C. 56.39; H. 7.30; N. 8.63; F. 17.71. Calc. for $C_{15}H_{23}F_{3}N_{2}O_{2}$ (320.35): C. 56.24; H. 7.24; N. 8.74; F. 17.79).

Under these same conditions, N.N'-dicyclohexyl urea was recovered unchanged.

A basic reaction using a mixture of H_2O_2 (1.12 g of a 90% soln. 0.03 mole) in water (5 ml). NaOH (0.5 g. 0-0125 mole) in EtOH (10 ml) and N.N'-dicyclohexylcarbodiimide (4-12 g. 0-02 mole) in dichloromethane (50 ml) at 0' afforded N.N'-dicyclohcxyl urea.

A neutral reaction was attempted with pertrifluoroacetic acid. freshly prepared from trilluoroacetic anhydride (139 g, 0.066 mole) and H_2O_2 (2.0 g of a 90% soln. 0.055 mole), that was added dropwise over a 15 min period to a stirred mixture of finely ground disodium hydrogen phosphate (20 g) and N.N'dicyclohexylcarbodiimide (103 g. 005 mole) in dichloromethane (30 ml). The products were N.N'-dicyclohexyl urea and N-trilluoroacetyl-N.N'-dicyclohexyl urea. as well as a yellow oil. This last material was apparently a peroxide, as it gave a positive Ferrox test,⁸ and possessed infrared absorptions bands attributed to such a function.

Oxidation of N.N'-diphenylsulfurdiimide. Petrifluoroacetic acid, prepared from trifluoroacetic anhydride (1.16 g, 0.0055 mole) and H_2O_2 (0.19 g of a 90% soln. 0.0055 mole) in dichloromethane (15 ml) was added dropwise to a chilled. stirred soln of N,N'-diphenylsulfurdiimide (1-07 g, 0-005 mole) in dichloromethane (30 ml). The black soln was taken to dryness and the residue was chromatographed in benzene over silica gel. The first fraction gave a semi-solid. which on crystallization from ligroin yielded pale beige needles of 2.2.2-trifluoroacetanilide (0.25 g). m.p. 86° (lit⁹ 88°); v_{max} 3450 (NH), 3330 (NH). 1700 (sec amide). 1600. 1545 (sec amide). 1500 (aromatic). 1450 (aromatic). 1350. 1285. 1240. 1190-1150 (CF₃). 920. 895. 755 (aromatic). 730. and 690 (aromatic) cm^{-1} . identical in all aspects with an authentic sample.

The second fraction on evaporation yielded a dark red oil that was shown to be a mixture on the basis of TLC on silica gel. No further work was attempted on this material

N-Hydroxy-N.N'-diphenyl-thiourea. Phenylhydroxylamine (400 g, 037 mole) was added to phenyi isothiocyanate (560 g. 0.35 mole) in ether (350 ml) at 0°. After standing at room temp for 3 hr. the solvent was evaporated and the residue was crystallized from EtOAc-light petroleum to afford a sticky, yellow solid (610 *9).* A portion of this material was dissolved in IN NaOH filtered, and then acidified with 1N HCL The ppt was collected. dried. and crystallized in the form of shiny white plates. m.p. 110° (lit¹¹ 111⁻); v_{max} 3460 (NH). 3350 (NH). 3020 (CH. aromatic). 2770. 1600 (aromatic). 1530. 1490 (aromatic). 1350 (sulfonamide). 1240 (thioketone). 1000. 950. 765. and 700 cm⁻¹; 472-411 (complex. aromatic) and 32 (singlet. ROH) Hz $(CDCl₃)$.

Oxidation of *N-hydroxy-N.N'-diphenyl-thiourea*. Freshly prepared NaOCl soln¹⁷ (80 ml of a 16-4^o; soln. 0177 mole) was added dropwise to a stirred mixture of N-hydroxy-N.N'-diphenyl-thiourea (1074 g. 0044 mole) in water (44 ml)and dichloromethane (26 ml) while the temp was maintained at 8". After standing in the refrigerator overnight the reaction was filtered to remove unreacted starting material (2.2 g). The organic layer was separated. washed. dried. and evaporated to leave a dark yellow solid. Chromatography over silica gel and eiution with chloroform gave three major fractions. The fist produced a solid that was crystallized lirst from chloroform-ligroin and then from dichloromethane to afford shiny, pale yellow crystals of 1.3.4.6-tetraphenyl-2,5-dithio-biurea (1.6g). m.p. 162° ; v_{max} 3445.3340.3130 (NH), 2950 (aromatic). 1590 (aromatic). 1530 amide NH). 1490 (aromatic). 1445 (thioketone). 1360. 1265. 1200. 765. 725. 695 (phenyl). and 635 cm⁻¹; m/e (30 electron volts) 455 (C₂₆H₂₂N₄S⁺) parent. less than 1%, 286 (C₁₉H₁₆N₃) 2% 228 (C₁₃H₁₁N₂S⁺) 83% 194 (C₁₃H₁₀N₂⁺) 63% 135 (C₇H₃NS⁺) 100% 118 94% and 109 88%; 620-600 (broad, singlet). 523 (singlet. NH). 471-453 (complex. aromatic). 449-417 (complex. aromatic). and 297-287 (broad. singlet) Hz (deuteriopyridine). (Found: C. 68-56; H. 5-16; N. 12-29; S. 14-25. Calcd. for $C_{26}H_{22}N_4S_2$ (454.59): C. 68.69; H. 4.88; N. 12.34; S. 14.10).

The second set of fractions left a solid that was crystallized from chloroform-ligroin and then **fromdichloro**methane to give 1.3-diphenyl urea (0-5 g), m.p. 232°, identical in all aspects with an authentic sample.

The third set of fractions after evaporation consisted ofa small quantity of dark green oil TLC on aluminium oxide revealed four major spots No further work was done on this material

1,3,4,6-Tetraphenyl-2,5-dithio-biurea. Hydrazobenzene (20 g, 0011 mole) and phenyl isothiocyanate (30 ml) were refluxed in an oil bath at 130' for 6 **hr. Light petroleum was added to the** cooled mixture and the resulting solid was collected and crystallized from benzene to yield 1.3.4.6-tetraphenyl-2.5-dithiobiurea (10 g). m.p. 164 $^{\circ}$ (lit.¹² 168 $^{\circ}$). The IR spectrum was identical to the product isolated from the oxidation of N-hydroxy-N.N'-diphenyl-thiourea.

Oxidation of N-hydroxy-N,N'-diphenyl-urea. The oxidation of N-hydroxy-N,N'-diphenyl-urea (10-04 g, 0.044 mole) was done as described for the corresponding thiourea. After 1 hr the black soln was filtered to give a beige solid (1.2 g) , m.p. 232°, identified as 1,3-diphenyl-urea by comparison with an authentic sample.

The filtrate was reduced in volume $(ca 3$ ml) and chromatographed over silica gel using chloroform for development. Two major fractions were obtained by this procedure. The first consisted of dark red oils (2.3 g). while the second was a red solid After a wash with MeOH to remove most of the color, the remaining material was crystallized from chloroform-light petroleum to yield 1.2,4-triphenylsemicarbazide (2.4 g). m.p. 221°; v_{max} 3450 (NH), 3365 (NH), 3260 (NH), 1655 (sec amide), 1593 (amide), 1590, 1530. 1440, 1328, 1312 1295. 1215. 758. 745. and 690 (phenyl) cm-'; 470-408 (multiple. aromatic) and 199 (singlet, NH) Hz (deuteriodimethylsulfoxide); m/e 303 (C₁₉H₁₇N₃O⁺) parent 92%, 185 (C₁₂H₁₂N₂⁺) 11%, 173 $(C_{10}H_{10}N_3O^+)$ 74%, 174 100%, 109 $C_4H_3N_3O^+$ 41%, 83 and 82 $(C_2HN_3O^+)$ 100%. (Found: C, 75.17; H, 5.48; N, 13.42. Calc. for C₁₉H₁₇N₃O (303.35); C, 75.22; H, 5.65; N, 13.85).

1.2.4-Triphenylsemicarbazide. Hydrazobenzene (50 g, 0-027 mole) and phenyl isocyanate (3.2 g, 0-027 mole) in benzene were stirred for 2 days at room temp. The solid product was collected and crystallized from chloroform-MeOH (9:1) to give white crystals of 1.2.4-triphenylsemicarbazide (4.1 g), m.p. 219°. The IR spectrum was identical to the product isolated from the oxidation of N-hydroxy-N,N'-diphenyl-urea.

Acknowledgement-We thank the National Institutes of Health (AM 12616) for the support of this work.

REFERENCES

- $¹$ Heterocyclic Compounds. IX. For the previous paper in this series, see : B. Weinstein and D. N. Brattesani.</sup> *J. Org. Chem* 32 4107 (1967)
- x D. B. Denny and F. Feig, *J. Am Chem Sot.* 81,225 (1959)
- 3 F. D. Green and J. Kaxan. *J. Org. Chem 28.* 2169 (1963)
- ' F. D. Greene and J. F. Paxos Ibid 34,2268 (1969)
- s F. D. Greene and W. R. Bergmark. *Ibid.* 35.2813 (1970)
- 6 M. Smith. J. G. Moffatt. and H. G. Khorana *J. Am Chem Sot. 80.6204* (1958)
- ' J. B. Jones and D. C. Wigtield Canad. *J. Chem 44.2517* (1966)
- ⁸ N. D. Cheronis and J. B. Entrikin, Semimicro Qualitative Organic Analysis, p. 232. Interscience, New York (1957)
- s F. Swarts, *B\$l. Sci. Acad, rpy. Belg. 8,* 343 (1922)
- ¹⁰ E. Schmidt and M. Seefelder, Liebigs Ann. 571, 83 (1951)
- ¹¹ S. Beckmann, *J. Prakt. Chem.* (2) 56, 89 (1852)
- ¹² T. Otterbacker and F. Whitmore, *J. Am. Chem. Soc.* **51**, 1910 (1929)
- I3 E Boyland and R. Nery. *J. Chem Sot. (c).* 354 (1966)
- I4 K. Nakagawa. H. Onoue. and K. Minami. Chem Pharm *Bull.* 17.835 (1969)
- ¹⁵ H. E. Baumgarten, A. Staklis, and E. M. Miller, *J. Org. Chem.* 30, 1203 (1965)
- I6 A. R. Forrester. M. M. Ogilvy. and R. H. Thompson. *J. Chem Sot. (C).* 1081 (1970)
- I7 R. Adams and B. K. Brown. Org. *Syn..* Coll. Vol. 1. 309 (1941)